CS4677 Computer Forensics Live Data Collection

Chris Eagle Spring '06

Reading

- Text
 - Familiarize yourself with "Case Studies" pages xxv-xxix
 - Chapters 1 & 2

Reading

- Blackhat Presentation
 - http://www.blackhat.com/presentations/bhusa-03/bh-us-03-willis-c/bh-us-03-willis.pdf
- Secret Service Guidelines
 - http://www.treas.gov/usss/electronic_evidenc e.shtml
- Curtis Rose Whitepaper
 - Windows Live Incident Response
 - http://web.archive.org/web/20040218163741/
 http://www.sytexif.com/whitepaper.htm

Tools

- dcfl-dd
 - http://dcfldd.sourceforge.net/
- George Garner's tools
 - http://users.erols.com/gmgarner/forensics/
- Bootable CD's
 - F.I.R.E 0.4a iso
 - http://sourceforge.net/projects/biatchux
 - Knoppix-std
 - http://www.knoppix-std.org/

Incident/Crime Scene

- What to collect?
 - Host based evidence
 - Network based evidence
 - Other evidence
 - Local search for passwords written on post-its etc...
 - Media in file cabinets
 - Connected devices
 - Digital cameras, USB keys

What to Collect?

- If you encounter a live system you may want to gather some evidence before shutting it down
- Every action you take alters the system
 - Minimize the number of steps
 - Collect only what is necessary
 - Volatile information

Volatile Information

- That information which will be lost when a system is powered down
- Volatile storage
- Volatile system information

Volatile Storage

- CPU register values
 - Too volatile, can't be captured accurately
- Cache memory contents
 - Beyond our reach, but depending on the cache design, may contain information that is not present in RAM
- RAM contents
 - Potential gold mine
- Virtual memory page file contents

Volatile System Information

- Running Processes
- Active network connections
- Open files and associated processes
- Logged in users
- Current system status information
- Much more

Where To Store Volatile Info?

Options

- Local hard drive
 - BAD! Modifies subject system!
- Record by hand
 - BAD! Tedious, error prone, too much info
- Save to removable media
 - May need high capacity
 - USB helps here
- Transfer across network

Evidence Storage

- Removable media or network transfer are best options
 - High capacity USB drives are excellent
 - Make sure they are formatted already
 - May change state of system when first connected
 - Network transfer via NFS/Samba shares or use of netcat
 - Must have proper configuration to do NFS/Samba
 - Can send virtually anywhere with netcat

Evidence Protection

 Set the immutable bit on each of your evidence files to prevent changes

```
chmod ugo-w <file>
```

- Is not sufficient!
- Use the chattr command to make a file immutable

```
chattr +i <file to protect>
```

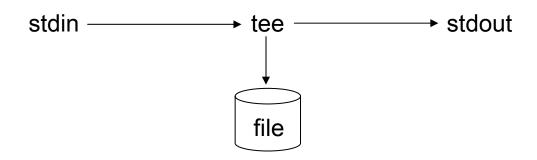
Evidence Integrity

- Each tool you run to collect evidence will generate output
- This output needs to be captured
- A cryptographic hash needs to be computed on the saved output
 - md5sum
 - sha1sum
 - Perform both or use a stronger hash such as SHA-256

Evidence Integrity

- Some tools tailored specifically for forensics will report the md5 hash value for output they have generated
 - You confirm by hashing the saved output file
- MD5 and SHA1 may be broken! Use both or a stronger hash such as SHA-256

Time Stamping


- Consider obtaining cryptographically signed time stamps of your hash values
- Proves that the hash values were obtained no later than a specific time
- One such service is offered at
 - http://www.itconsult.co.uk/stamper/stampinf.htm

Command Plumbing

- A solid understanding of piping and redirection is helpful
 - Redirection
 - send standard output of a program to a file (replaces console)
 - < take standard input for a program from a file (replaces keyboard)
 - Piping
 - | connect standard output of one program to standard input of another program

tee

- It is a good goal to attempt to generate hash values at the same time you collect a piece of evidence
 - Though not always possible
- The tee command splits its standard input to a file and standard out

tee Examples

- netstat -an
 - stdout only
- netstat -an > netstat.txt
 - File only
- netstat -an | tee netstat.txt
 - Both stdout and file
- netstat -an | tee netstat.txt | sha1sum
 - File and a sha1sum to stdout
- netstat -an | tee netstat.txt | sha1sum > netstat.sha1
 - File and a sha1sum to file (nothing to stdout)

Netcat Basics

- Two modes
 - Client mode
 - Copies stdin to a remote "server"
 - Reads from server to stdout
 - Specify IP and port to connect to
 - Server mode
 - Awaits an incoming connection and copies incoming client data to stdout
 - Copies stdin to client computer
 - Specify listen mode and port to listen on

Netcat Example

- Client side victim machine
 - Pipe output of evidence gathering command into netcat in client mode

```
netstat -anp --inet | nc data.forensics.org 1234
```

- Server side evidence collection machine
 - Receive remote data and save to evidence file

```
nc -l -p 1234 > netstat.txt
```

- Caution switches for nc vary by OS
- Forensics versions of netcat can compute md5 sums as they transfer data

Netstat Example

 Using tee it is possible to compute hash values on receiving side

```
nc -l -p 1234 | tee netstat.txt | sha1sum > netstat.sha1
```

 Received data is saved to an evidence file and integrity value of that file is computed and saved to a separate file

Cryptcat

- Cryptographically enhanced version of netcat
 - http://sourceforge.net/projects/cryptcat
 - Supply password on the command line to encrypt all traffic using twofish
 - Useful if sending evidence across internet for example

Tools Collection

- Have a collection of tools handy for collecting volatile evidence
 - F.I.R.E is not a bad start
- DO NOT rely on any software on the subject system
 - Bring your own command shells
 - Use statically linked binaries
 - Don't trust dynamic libraries on subject system
 - F.I.R.E provides this

Getting Started

- Open a clean command shell
 - One you brought with you
 - Statically linked
 - Issue all commands from within this shell

Imaging RAM (text pg. 26)

- Should probably perform early before you make too many changes
- Must have root/Administrator access
- Windows
 - Use George Garner's version of dd
- Unix
 - Use standard dd or dcfldd command

dd Basics

- dd is a standard Unix tool for copying blocks of data
 - Can perform some data conversions
 - But we won't require these
 - By default copies stdin to stdout
 - Input/output can alternately be a file or device
 - · Device can be a single partition or an entire hard drive
 - Can take any portion from any offset of the input
 - Use skip, count, bs options

Imaging RAM w/ dd

Windows

Assuming g is our own usb drive on the victim system

```
dd if=\\.\PhysicalMemory
  conv=noerror,sync bs=4096
  of=g:\ram.img --md5sum
```

- Imaging across the network

```
dd if=\\.\PhysicalMemory
  conv=noerror,sync bs=4096 --md5sum |
  nc data.forensics.org 1234
```

Imaging RAM w/ dd (II)

Unix

- Useful devices
 - /dev/mem physical memory
 - /dev/kmem kernel virtual memory
- Assuming /mnt/usb is our own usb drive on the victim system

```
dd if=/dev/mem conv=noerror,sync bs=4096
  of=/mnt/usb/ram.img
dcfldd if=/dev/mem conv=noerror,sync bs=4096
  of=/mnt/usb/ram.img hashwindow=0
```

Imaging across the network

```
dd if=/dev/kmem conv=noerror,sync bs=4096 | nc
  data.forensics.org 1234
dcfldd if=/dev/mem conv=noerror,sync bs=4096
  hashwindow=0 | nc data.forensics.org 1234
```

MAC Times

- File MAC times
 - On Unix and NTFS file systems, all files have not one but three time stamps associated with them
 - (M)odification mtime
 - (A)ccess atime
 - (C)hange ctime
 - The dir and Is commands only show mtime by default

System Time

- Current system date and time
 - Windows
 - date /t > date.txt
 - time /t > time.txt
 - Unix
 - date > date.txt

Network Configuration

- Network Interface Configuration
 - Windows
 - ipconfig /all
 - IP/MAC address among others
 - Unix
 - ifconfig -a
 - cat /etc/hosts
 - cat /etc/resolv.conf
 - route
 - Can indicate if an interface is in promiscuous mode

Active Network Connections

- Current Network Connections
 - Windows
 - netstat -anobv
 - a: all listening ports
 - n: numeric display of ports/ips
 - o: owning process id (XP only)
 - b: display executable involved in creating socket
 - Fport http://www.foundstone.com/
 - Select "Resources" then "Free Tools"
 - TcpView http://www.sysinternals.com/Utilities/TcpView.html
 - Tcpvcon console version
 - » tcpvcon -an

Active Network Connections

- Current Network Connections
 - Unix
 - lsof
 - List of open files, some of which are network sockets
 - netstat -anp --inet
 - -a: show all sockets, not just established
 - -n: don't resolve names
 - -p : process id/name
 - --inet : IP sockets only (no unix sockets)

CAUTION options vary by OS, those above work with Linux

Recent Network Connections

- Book recommends
 - Windows
 - NetBios table stats

```
nbtstat -c
```

Current arp table

```
arp -a
```

- Unix
 - arp

Users

- Current System User's
 - Windows
 - psloggedon
 - http://www.sysinternals.com/ntw2k/freeware/pstools.shtml
 - Unix
 - who
 - W

Routing Tables

- Windows
 - route print
 - netstat -r
- Unix
 - route -n
 - netstat -rn

Active Processes

- Currently Running Processes
 - Windows
 - tasklist
 - pslist
 - psservice
 - http://www.sysinternals.com/ntw2k/freeware/pstools.shtml
 - ProcessExplorer
 - http://www.sysinternals.com/Utilities/ProcessExplorer.html
 - Unix
 - ps -aux
 - Displays any running "services"

Services

- A service is a process
 - Started automatically at system startup
 - Runs in the background to provide various services
- Windows
 - Services must be installed and registered as services
 - Do not necessarily appear under task manager
- Unix
 - Similar idea, but no standard startup across Unix versions
 - RedHat: chkconfig
 - Others: /etc/init.d, /etc/rc.sysinit,
 /etc/rc.local

Currently Open Files

Open files

- Applications can have many files open at any given time
- Unix extends the notion of a "file" to many different things including network sockets
- May be the only way to see some "deleted" files
 - A running program can "unlink" a file, effectively deleting it in the eyes of the file system
 - Not officially deleted until the program exits

Open Files

- Listing Open Files
 - Windows
 - openfiles /Query
 - openfiles /Local ON
 - » enables listing of local open files AFTER REBOOT
 - » Adds performance overhead
 - psfile
 - Lists files opened remotely
 - listdlls
 - List dlls in use by each executing process
 - http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml
 - Unix
 - lsof
 - · List open files
 - Lists all files opened by a process including data files and sockets

Drive/Partition Information

- Mounted partitions
 - Windows
 - volume_dump
 - George Garner
 - Listed as part of psinfo
 - Unix
 - mount
 - Lists partition name, mount point, and file system type
 - fdisk -lu <device>